Children's Error in “Addition

     Yam Prasad Pandeya
Siddhajyoti Education Campus 
Kamalamai-5, Sindhuli               

        Abstract

        It is based on a study concerned errors made by children of primary school while performing an addition operation. The addition is one of the basic mathematical operations that children practices in early classes. This research was intended to find out the types of an error made by children in addition. The researcher prepared a questionnaire containing 20 different questions focusing on children of 5 to 7 years. Five schools were selected by purposive sampling and 50 students by random sampling. A test was administered among them and analyzed the errors made by them. The findings revealed that many children had confusion about the basic fact of “Addition” as they made mistakes while setting numerals as horizontally and, some children wrote the carried number in answer, some of them forgot carried number, and some added the carried number twice and some children made errors by starting to add from the left-hand side. 

Keywords: Children, Addition, Error, Early class

Introduction

Mathematics as a subject in the school curriculum is compulsory, both at the Primary and High schools. It also plays leading and important roles in all aspects of human endeavor. The use of mathematics is found in many areas of real-life situations. The field of management, business, and marketing is no exception. In the history of education, mathematics has held its leading position among all other school subjects because it has been considered an indispensable tool in this technological fast-growing world.

 The foundation blocks of mathematics are made up of the concepts of additions and subtractions. Therefore no building of mathematics can be put up without the solid basic foundation concept, which is, addition. It is one of the most important concepts of mathematics and one inability to do simple addition, fails to climb the academic ladder of education to its topmost height

The addition is one of the basic mathematical concepts that children learn. “Addition” is considered a crucial skill because it is the most basic elementary concept that has a vital effect on the development of several other concepts related to mathematics, such as problem-solving, computation, subtraction, etc. level. According to Kim, addition is the mathematical process of putting the thing together. The plus sign “+” means that two numbers are added together.

The concept of addition, according to the Oxford Learner’s Advance Dictionary (2001), “is the process of adding two or more numbers of distinct values together to find their totals”. Atuahene (2019, p. 8), says, " addition refers to the act of putting two or more things together to increase the size, number, amount and so on. Addition and subtraction are the basis of mathematics". The main idea which is mostly used in our daily activities brings to light that almost all the concepts in mathematics are developed out of addition. For instance, the concept of measurement and algebra are made up of addition.

            From Land (1975), the letter and symbols which denote numbers are the short forms of mathematics and for that matter, greater attention should be given to it to make pupils understanding permanent to foster learning in the classroom. More so, it has been noted that most pupils normally find it very uneasy to cope with addition involving the place value concept.

Children learn this concept both formally and informally through interaction with others in their surroundings. But students make errors while learning it. Some researches undertaken by educationists tried to identify errors made by pupils. ( as cited in Munasinghe,p.1)

 According to Collins (1982) Dictionary, "an ‘error’ is something we have done which is considered to be incorrect or wrong". Ernest (1996, p.802) says, Many people’s images of mathematics represent mathematics negatively, such that mathematics is perceived to be "difficult, cold, abstract, and in many cultures, largely masculine". This is because most students make mistakes in understanding mathematical concepts during the early stage of learning, and this affects their ability in mathematics at a higher level. This is because most students make mistakes in understanding mathematical concepts during the early stage of learning, and this affects their ability in mathematics at a higher level.

Literature has shown many classifications of pupil errors in which they are grouped according to different criteria; groups such as systematic errors, random errors careless errors which are found to be common. Random errors and Careless errors are found to be common. Systemic errors are those that occur due to a lack of understanding or incorrect understanding of concepts and principles. Random errors show no discernible relationship to the problems. Careless errors may be accidental.  

Munasinghe (2013, p.5 ) says, “ Teaching instruction procedure has to be designed to reduce the problems encountered by the primary school children with “addition” of numbers. Further, the teacher has to pay individual attention to children and s/he should provide practice sessions to children on the representation of numerals. Further, the study points to the parental and teacher caring when guiding basic mathematical and linguistic skills by using the correct language with children preparing necessary environmental factors”.

There are very few researchers' findings that show that most primary school children face mistakes of addition at primary school. Primary school children have to be able to read numbers like 1…2…3…4… from memory. This is the rote or mechanical learning process where they are not aware of the fact that these numbers are arranged in a certain order or that each number has a definite position on the number sequence. Children are required to develop the ability to perform the “addition” of three numerals carry over is involved. Somehow the main aim of the research was to identify error patterns in addition made by grade two (5 to7years) children in performing “addition” involving 2 or 3 digits with carrying out.

Most of the students consider mathematics a difficult subject. The primary level students make many errors in performing addition operations. This is because they cannot understand all the rules of addition and when we teach different rules they forget the previous rule which they already learned. If students cannot perform addition operations properly then it will be very difficult to teach them other methods like subtraction, multiplication, and division. So, they should have a clear concept about “Addition”. This research tried to find the errors made by primary-level students. 

The Study

A study on assessment of pupils' achievement in primary mathematics with special reference to the analysis of errors diagnosed through interviews was carried out by (Nanayakara, 2002) who tried to contribute towards the quality improvement of mathematics education in Sri- Lanka. The study focused on assessing pupil’s achievements in primary mathematics with emphatics on the error patterns and underlying causes for the unusual achievement patterns. The study focused on systemic errors which occur due to a lack of understanding of concepts. Conceptual error patterns regarding the concept of addition were identified in the research. They were;

·         Recalls “Addition” basic facts incorrectly.

·         Starts “Addition” from the left.

·         Totals incorrectly when “0” is one of the numbers to be added.

·         Commits errors due to lack of understanding of place value concept and carrying over the concept.

 

Methodology

The research design of this study was an experimental research design of quantitative search. Bhat(2019), said that "Experimental research is any research conducted with a scientific approach, where a set of variables are kept constant while the other set of variables are being measured as the subject of experiment". In this, the researcher wished to find the types of errors while children perform addition at the primary level. Hopkins (2008. the quantitative research aim is to determine the relationship between one thing (an independent variable) and another (a dependent or outcome variable) in a population. Quantitative research designs are either descriptive or experimental. The location of the study was Kamalamai Municipality of Sindhuli district. The researcher had selected five primary schools for data collection purposively.  Ten students of 5 to 7 years were selected using random sampling to administer the questionnaire. The researcher had employed a questionnaire that consisted of 20 items of questions as a tool for data collection. The researcher selected 50 students from 5 schools selecting 10 students from each school. The variables like age, sex socio-economic background, educational achievement, and teachers’ responses have not taken into account while selecting students

The entire information gathered from the primary sources was processed, analyzed, and interpreted. The descriptive method was used for analysis and interpretation of data presenting in tables and diagrams to show the result. The analysis of data was carried out through the coding process. The codes were categorical and thematic. The information of analyzed data was viewed from different theoretical perspectives. The collective data were encoded and similar information was kept in one basket. Firstly, the researcher collected the answer sheets and checked them to find how many children gave the right answer for all questions. At the same time, I find out how many questions were wrong there. After finding wrong answers, the researcher analyzed them to find out what sort of errors were committed. Finally, enlisted the different types of errors found in the answer sheets. 

Analysis and Interpretation

To collect the data researcher had employed a questionnaire that consisted of 20 items of questions. At the first stage of analysis of data the researcher separate the wrong and right answer from all questions. After finding wrong answers, the researcher analyzed them to find out what sort of errors were committed. 

Students' performance

The percentage of students who gave write or wrong answers has been presented in the following table:

 

                                               Figure 1. Students' Performance

The above pie-chart shows that very less number of children was able to give the right answer and almost all children made any kind of mistakes. Among 50 students only 22% children gave the right answers and the remaining 78% children made any type of mistake.

Number of Incorrect Answers Given by Children

The number of incorrect answers given by children has been presented in the following table:

Table 1. Numbers of Incorrect Answers

No. of questions

No. of children

Percentage

1-5

2

5.12 %

6-10

11

28.20 %

11-15

14

35.89 %

16-20

12

30.76 %

 

From the above table, we see that 2 children made 1 to 5 wrong answers and those who made 6 to 10 incorrect answers were 11. Similarly, 14 did wrong for 11 to15 questions and 12 children gave the wrong answer for 16 to 20 questions. Percentages of students who made the different number of wrong answers have been given in the above table.

Types of Errors Made by Children

Types of the error made by children have been presented in the following table:

Table  2. Types of error

S.N.

Types of error

Nov . of children

1

Basic fact error

28

2

Added carried number last

3

3

Forgot to add carried number

7

4

Faulty set down

10

5

Added from left to right

8

6

Confused with zero used in addition

4

7

Carried wrong number

2

 

 

 

 

 

 




The above table, shows that the students performed different errors, out of 50 children, 28 children made basic fact error, 3 children added carried number, at last, forget to add the carried number by 7students, added from left to right by 8 students. The 4 students got confused to add zero and 2 students carried a wrong digit.

Findings

The primary school children made different kinds of errors. Some children have done some random errors but most of the children revealed different kinds of error patterns. Many children have confused about the basic fact of “Addition”. They made mistakes while setting numerals horizontally. Even they didn’t know the number in the unit’s place and add the number in unit place with the number in ten’s place. Some children were found to be confused in addition to zero. Similarly, some children wrote the carried number in answer, some of them forgot carried number, and some added the carried number twice and some children made errors by starting to add from the left-hand side.

Conclusion

Many children have done some common errors and which can be eliminated by practice and proper guidance. The teaching instruction procedure should be designed to address the problems encountered by the primary school children with the addition of numbers. The teacher has to pay individual attention to children and use children centered teaching-learning process. While teaching, the teacher should show the different types of errors made by children when performing addition.

Implications

This study can be a reference material for primary-level mathematics education. This study is also helpful for the course designers, book writers, publishers, teachers, parents, and students. Specifically, the teacher can use the results of this study while teaching in the classroom.

References

References

Atuahene E. (2019), Addition of Two and Three-Digit Numbers In Primary Two, https://independent.academia.edu/EmmanuelAtuahene

Bhat A.(2019), Experimental Research  Definition, https://www.questionpro.com/blog/experimental-research/

 Collins (1982),  COBUILD Advanced English Dictionary. HarperCollins Publishers.

Ernest, P. (1996). Popularization: myths, mass media, and modernism. In A. J. Bishop

(Ed.), The International Handbook of Mathematics Education.Dordrecht: Kluwer Academic.

Land Frank (1975), The Language of Mathematics, Britain, Murray John Publishers Ltd

Hopkins W. G. (2008), Sportscience 4(1), sportsci.org/jour/0001/wghdesign.html,Department of Physiology and School of Physical Education, University of Otago, Dunedin, New Zealand 9001.

Land Frank (1975), The Language of Mathematics, Britain, Murray John Publishers Ltd

Mottershead Lorraine (1985), Sources of Mathematics Discovery, Britain, Basil Blackwel, Oxford

Munasinghe D. M. W. (2013), A study on error patterns in “Addition” in primary

schoolchildren (7 years old children), Merit Research Journal of Education and Review,1(7)

Nanayakkar GSL (2000), Assessment of pupil achievement in primary mathematics Sri- Lanka


No comments:

Post a Comment

If you have any doubts, please comment me